МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учебно-методическое объединение по высшему медицинскому, фармацевтическому образованию

УТВЕРЖДАЮ

Первый заместитель
Министра образования
Республики Беларусь
И.А.Старовойтова
Регистрационный № ТД/тип.

БИОЛОГИЧЕСКАЯ ХИМИЯ

Типовая учебная программа по учебной дисциплине для специальности 1-79 01 03 Медико-профилактическое дело

СОГЛАСОВАНО	СОГЛАСОВАНО
Первый заместитель Министра здравоохранения Республики Беларусь	Начальник Главного управления профессионального образования Министерства образования Республики Беларусь
Е.Н.Кроткова 2022	С.А.Касперович 2022
СОГЛАСОВАНО	СОГЛАСОВАНО
Сопредседатель Учебно-методического объединения по высшему медицинскому, фармацевтическому образованию С.П.Рубникович 2022	Проректор по научно-методической работе Государственного учреждения образования «Республиканский институт высшей школы» И.В.Титович 2022
	Эксперт-нормоконтролер
	2022

составители:

А.Д.Таганович, заведующий кафедрой биологической химии учреждения образования «Белорусский государственный медицинский университет», доктор медицинских наук, профессор;

Ж.А.Рутковская, доцент кафедры биологической химии учреждения образования «Белорусский государственный медицинский университет», кандидат медицинских наук, доцент

РЕЦЕНЗЕНТЫ:

Кафедра биологической химии учреждения образования «Гомельский государственный медицинский университет»;

В.В.Лелевич, заведующий кафедрой биологической химии учреждения образования «Гродненский государственный медицинский университет», доктор медицинских наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой биологической химии учреждения образования «Белорусский государственный медицинский университет» (протокол № 7 от 04.02.2022);

Научно-методическим советом учреждения образования «Белорусский государственный медицинский университет» (протокол № 2 от 16.02.2022);

Научно-методическим советом по медико-профилактическому делу Учебнометодического объединения по высшему медицинскому, фармацевтическому образованию

(протокол № 2 от 24.02.2022)

Пояснительная записка

«Биологическая химия» — учебная дисциплина медико-биологического модуля, содержащая систематизированные научные знания в области медицинской биохимии, изучающая молекулярные основы процессов жизнедеятельности человека в норме и возможные причины и последствия нарушений метаболических реакций.

Типовая учебная программа по учебной дисциплине «Биологическая химия» разработана в соответствии с:

образовательным стандартом высшего образования по специальности 1-79 01 03 «Медико-профилактическое дело», утвержденным и введенным в действие постановлением Министерства образования Республики Беларусь от 26.01.2022 № 14;

типовым учебным планом по специальности 1-79 01 03 «Медикопрофилактическое дело», (регистрационный № L 79-1-002/пр-тип.), утвержденным первым заместителем Министра образования Республики Беларусь 21.04.2021.

Цель учебной дисциплины «Биологическая химия» - формирование у студентов систематизированных научных знаний о молекулярных основах физиологических функций человека в норме с учетом онтогенеза; молекулярных основах развития патологических процессов, их предупреждения и лечения; биохимических методах диагностики заболеваний и контроля состояния здоровья человека.

Задачи учебной дисциплины состоят в формировании у студентов научных знаний об:

основных принципах молекулярной организации клетки, ткани, организма человека;

основных закономерностях метаболических процессов, регуляции метаболизма и его взаимосвязи с функциональной активностью живой системы;

патогенетических механизмах развития патологических процессов с учетом основных типов наследуемых дефектов метаболизма;

методах биохимических исследований;

основных принципах клинико-лабораторных и экспертных санитарногигиенических технологий;

умений и навыков, необходимых для:

использования результатов биохимических исследований для оценки состояния здоровья человека;

интерпретации результатов лабораторных и инструментальных методов исследования.

Знания, умения, навыки, полученные при изучении учебной дисциплины «Биологическая химия», необходимы для успешного изучения следующих учебных дисциплин: «Основы здорового образа жизни», «Онкология», «Профессиональные болезни»; модулей: «Фармакологический модуль»,

«Основы здоровьесбережения человека», «Терапевтический модуль», «Психиатрия и экспертиза».

Студент, освоивший содержание учебного материала учебной дисциплины, должен обладать следующей базовой профессиональной компетенцией:

БПК. Использовать знания о молекулярных основах процессов жизнедеятельности в организме человека в норме и при патологии, применять принципы биохимических методов диагностики заболеваний, основных методов биохимических исследований.

В результате изучения учебной дисциплины «Биологическая химия» студент должен

знать:

химический состав организма человека, строение и физико-химические свойства основных классов соединений, их метаболизм и механизмы регуляции; основы строения и функции ферментов;

механизмы окислительного фосфорилирования, молекулярные механизмы процессов энергетического сопряжения;

основы биосинтеза белка, современные представления о фолдинге; свободнорадикальные реакции окисления, роль в норме и патологии; биохимические основы здорового питания;

уметь:

проводить химические исследования, интерпретировать их; определять реакцию среды в растворах и биологических жидкостях; работать с аппаратурой клинико-биохимических лабораторий. интерпретировать результаты лабораторных исследований;

владеть:

навыками биохимического обследования организма человека.

В рамках образовательного процесса по данной учебной дисциплине студент должен приобрести не только теоретические знания, практические умения и навыки по специальности, но и развить свой ценностно-личностный, духовный потенциал, сформировать качества патриота и гражданина, готового к активному участию в экономической, производственной, социально-культурной и общественной жизни страны.

Всего на изучение учебной дисциплины отводится 216 академических часов, из них 132 аудиторных и 84 часа самостоятельной работы студента.

Рекомендуемые формы текущей аттестации: зачет (2 семестр), экзамен (3 семестр).

Примерный тематический план

Всего Наименование раздела (темы) аудиторн часов		Примерное распределение аудиторных часов по видам занятий	
	10002	лекции	практические
1. Введение в учебную дисциплину «Биологическая химия». Структура и функции белков	12	-	12
1.1. Предмет и значение биологической химии в работе врача медикопрофилактического профиля. Белки: свойства и функции	3	-	3
1.2. Структура белковой молекулы	3	-	3
1.3. Методы фракционирования и очистки белков	6	-	6
2. Ферменты	11	2	9
2.1. Свойства и механизм действия ферментов	4	1	3
2.2. Регуляция действия ферментов	7	1	6
3. Введение в метаболизм.			
Биологическое окисление. Центральные	12	3	9
пути метаболизма	4	1	3
3.1. Введение в метаболизм и биоэнергетику	4	1	3
3.2. Центральные пути метаболизма 3.3. Биологическое окисление	4	1	3
4. Обмен и функции углеводов	12	3	9
4.1. Углеводы. Анаэробные пути окисления		3	-
глюкозы в клетке. Обмен гликогена	4	1	3
4.2. Аэробное окисление глюкозы. Пути метаболизма пирувата. Глюконеогенез	4	1	3
4.3. Вторичные пути обмена глюкозы. Патология углеводного обмена. Влияние гормонов на уровень глюкозы в крови	4	1	3
5. Обмен и функции липидов	15	3	12
5.1. Классификация липидов. Переваривание и всасывание липидов. Транспортные формы липидов в крови	4	1	3
5.2. Ресинтез липидов в печени. Внутриклеточный обмен жирных кислот	4	1	3
5.3. Обмен холестерола. Метаболизм кетоновых тел	4	1	3
5.4. Регуляция обмена липидов. Нарушения липидного обмена. Здоровый образ жизни как	3	-	3

Всего Наименование раздела (темы) аудиторных часов		Примерное распределение аудиторных часов по видам занятий	
		лекции	практические
фактор профилактики атеросклероза			
6. Обмен простых белков и аминокислот	10	1	9
6.1. Переваривание белков. Пути использования аминокислот в клетке	4	1	3
6.2. Обезвреживание аммиака. Пути			
превращения безазотистого остатка	6	-	6
аминокислот. Показатели азотистого обмена			_
7. Обмен нуклеопротеинов. Строение и			
синтез нуклеиновых кислот. Биосинтез	12	3	9
белка. Методы молекулярной биологии			
7.1. Строение и обмен нуклеопротеинов	4	1	3
7.2. Биосинтез нуклеиновых кислот и белков	4	1	3
7.3. Современные методы молекулярной			
биологии и их прикладное значение для	4	1	3
медицины			
8. Регуляция обмена веществ. Биохимия	13	4	9
гормонов		-	
8.1. Основные механизмы регуляции метаболизма. Механизм действия гормонов	5	2	3
8.2. Влияние важнейших гормонов на			
метаболизм	8	2	6
9. Биохимия органов и тканей	17	2	15
9.1. Биохимия крови. Свертывание крови	7	1	6
9.2. Биохимия печени	4	1	3
9.3. Биохимия почек и мочи	6	-	6
10. Биохимия питания	15	3	12
10.1.Незаменимые факторы питания.			
Витамины. Причины и биохимические	4	1	2
характеристики синдрома недостаточного	4	1	3
питания			
10.2. Вода и минеральные соли	4	1	3
10.3.Обмен кальция и фосфора.			
Микроэлементы. Роль окружающей среды в	7	1	6
развитии макро- и микроэлементозов			
11. Основы биохимического мониторинга			
в разработке критериев обеспечения	3	-	3
здоровья населения	422	2.1	400
Всего часов	132	24	108

Содержание учебного материала

1. Введение в учебную дисциплину «Биологическая химия». Структура и функции белков

1.1. Предмет и значение биологической химии в работе врача медико-профилактического профиля. Белки: свойства и функции

Важнейшие этапы развития биологической химии. Место биологической химии в медицинском образовании и санитарной службе. Основные разделы и направления в биологической химии. Объекты биохимического исследования. Медицинская биохимия. Роль биологической химии в понимании взаимоотношений человека и окружающей среды.

Открытие аминокислот, становление пептидной теории строения. Классификация белков по функциям, форме белковой молекулы, степени сложности состава. Физико-химические свойства белков и белковых растворов.

1.2. Структура белковой молекулы

Первичная структура: типы связей, свойства пептидной связи. Методы исследования первичной структуры. Различия аминокислотного состава белков различных органов и тканей, значение этого факта в биохимии питания. Изменения белкового состава тканей в онтогенезе и при заболеваниях.

Конформация полипептидной цепи. Вторичная структурная организация, типы вторичной структуры, роль водородных связей в ее стабилизации. Надвторичная структура и ее типы. Третичная структура. Роль слабого внутримолекулярного взаимодействия в стабилизации пространственной структуры и изменениях конформации. Зависимость биологической активности белков от конформационных изменений. Денатурация белков, обратимость денатурации. Четвертичная структурная организация белков. Функциональные особенности белков с четвертичной структурой.

Сложные белки. Общие представления о строении сложных белков, строение простетических групп, типы связей между апобелком и простетической группой. Краткая характеристика хромопротеинов, гликопротеинов, липопротеинов, фосфопротеинов, металлопротеинов.

Способность к специфическим взаимодействиям как основа биологических функций всех белков. Понятие комплементарность. Лиганды и функция белков. Обратимость связывания.

1.3. Методы фракционирования и очистки белков

Методы фракционирования и очистки белков: ультрацентрифугирование, ультрафильтрация, электрофорез, изоэлектрофокусирование, хроматография. Диализ и его применение в медицине. Способы получения белковых препаратов. Методы идентификации белков, Вестерн-блот.

Количественное определение суммарных и индивидуальных белков на основе их биологических свойств.

2. Ферменты

2.1. Свойства и механизм действия ферментов

История открытия и изучения ферментов. Классификация и номенклатура ферментов. Свойства ферментов. Зависимость скорости ферментативных реакций от температуры, рН, концентраций фермента и субстрата. Одно- и двукомпонентные ферменты. Коферменты, классификация. Коферментные функции водорастворимых витаминов.

Единицы измерения активности ферментов.

2.2. Регуляция действия ферментов

Механизмы регуляции активности ферментов: конкурентное ингибирование, аллостерические ферменты, регуляция путем ковалентной модификации структуры. Роль кооперативных изменений конформации ферментов в механизмах катализа реакций. Естественные и искусственные ингибиторы активности. Использование ингибиторов ферментов в медицине.

ферментного состава клеток, Различия органов Органоспецифические ферменты. Определение активности ферментов в крови с происхождение диагностической целью; ферментов Изоферменты. Ферменты как лекарственные средства. Ферменты аналитические реагенты в лабораторных исследованиях, иммобилизованные ферменты.

3. Введение в метаболизм. Биологическое окисление. Центральные пути метаболизма

3.1. Введение в метаболизм и биоэнергетику

Понятие о метаболизме, метаболических путях. Формы метаболических путей. Связь между анаболизмом и катаболизмом.

Методы исследования обмена веществ, исследование на целом организме человека, органах, срезах, клеточных культурах. Гомогенаты тканей, фракционирование гомогенатов, субклеточные структуры. Выделение метаболитов и ферментов, определение последовательности превращений субстратов. Изотопные методы. Методы моделирования и синтеза.

Схема катаболизма основных веществ - углеводов, жиров, белков. Понятие о специфических путях и центральных путях метаболизма. Понятие «метаболон».

3.2. Центральные пути метаболизма

Окислительное декарбоксилирование пирувата (ОДПВК), последовательность реакций, характеристика ферментов и коферментов. Понятие «полиферментный комплекс». Связь ОДПВК с цепью переноса электронов. Механизмы регуляции.

Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Связь цикла лимонной кислоты с цепью переноса электронов. Механизмы регуляции и функции цикла лимонной кислоты.

3.3. Биологическое окисление

Эндергонические и экзергонические реакции в живой клетке. Понятие «макроэрг». Окисление как основной путь получения энергии в живой клетке. Механизмы окисления: перенос электронов, присоединение кислорода к

субстрату, дегидрирование. Дегидрогеназы, строение и роль коферментов дегидрогеназ. Цепи окислительных реакций.

Строение митохондрий и структурная организация цепи переноса электронов. Полиферментные комплексы митохондрий и их строение.

Механизмы образования аденозинтрифосфорной кислоты (АТФ) в клетке. Субстратное фосфорилирование, окислительное фосфорилирование. Механизм окислительного фосфорилирования. Ингибиторы тканевого дыхания и окислительного фосфорилирования. Разобщение окислительного фосфорилирования.

Роль кислорода в процессах окисления в клетке. Оксидазы и оксигеназы. Активные формы кислорода и их роль в процессах жизнедеятельности. Краткая характеристика ферментативных (каталаза, пероксидазы, супероксиддисмутаза) и неферментативных звеньев антиоксидантной системы. Роль факторов внешней среды в активации свободнорадикального механизма повреждения клеточных структур.

4. Обмен и функции углеводов

4.1. Углеводы. Анаэробные пути окисления глюкозы в клетке. Обмен гликогена

Классификация углеводов. Основные углеводы животных и их биологическая роль. Углеводы пищи. Потребность в углеводах, основные требования к углеводному составу продуктов питания.

Центральная реакция углеводного обмена. Анаэробный распад глюкозы (анаэробная дихотомия, гликолиз). Гликолитическая оксидоредукция; пируват как акцептор водорода. Субстратное фосфорилирование. Другие акцепторы водорода в анаэробных условиях, спиртовое, молочнокислое брожение и их роль. Структурная организация процессов гликолиза в клетке, регуляция анаэробной дихотомии. Энергетический выход анаэробного окисления глюкозы.

Свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена. Мобилизация гликогена. Роль гормонов в регуляции резервирования и мобилизации гликогена. Гликогенозы и агликогенозы.

4.2. Аэробное окисление глюкозы. Пути метаболизма пирувата. Глюконеогенез

Аэробный распад глюкозы: общие реакции с гликолизом. Окислительное декарбоксилирование пирувата, цикл трикарбоновых кислот как этапы аэробного распада глюкозы. Энергетический выход окисления глюкозы в аэробных условиях.

Пируват как центральный метаболит. Глюконеогенез, основные субстраты для синтеза глюкозы в клетке. Ключевые ферменты глюконеогенеза. Регуляция глюконеогенеза.

4.3. Вторичные пути обмена глюкозы. Патология углеводного обмена. Влияние гормонов на уровень глюкозы в крови

Пентозофосфатный путь окисления глюкозы (апотомия). Ферменты окислительного этапа. Значение окислительного этапа апотомии. Неокислительный этап пентозофосфатного пути, основные ферменты. Связь

пентозофосфатного пути с гликолизом. Распространение пентозофосфатного пути в клетке и биологическая роль. Регуляция процесса.

Путь глюкуроновой кислоты, основные реакции, биологическая роль, связь с пентозофосфатным путем и гликолизом.

Гормональная регуляция уровня глюкозы в крови. Роль инсулина, адреналина, глюкагона, глюкокортикостероидов. Механизмы регуляторного действия гормонов.

Методы количественного определения глюкозы в крови.

5. Обмен и функции липидов

5.1. Классификация липидов. Переваривание и всасывание липидов. Транспортные формы липидов в крови

Понятие о липидах. Омыляемые и неомыляемые липиды. Структура и функции простых и сложных липидов.

Липиды пищевых продуктов. Требования к липидному составу продуктов питания. Переваривание липидов: эмульгирование, ферментативный гидролиз, мицеллообразование. Роль желчных кислот. Нарушение переваривания и всасывания.

Ресинтез липидов в клетках кишечника. Транспортные формы липидов в крови, хиломикрон как транспортная форма экзогенных липидов.

5.2. Ресинтез липидов в печени. Внутриклеточный обмен жирных кислот

Ресинтез липидов в печени и образование липопротеинов очень низкой плотности (ЛПОНП). Липопротеинлипаза и ее роль в обмене липопротеинов крови.

Механизмы активирования жирных кислот. Транспорт жирных кислот в митохондрии, роль карнитина. β-окисление жирных кислот - специфический путь катаболизма жирных кислот. Ферменты β-окисления. Окисление жирных кислот с нечетным числом углеродных атомов. Связь β-окисления с ферментами тканевого дыхания, энергетический выход окисления жирных кислот.

Другие пути окисления жирных кислот и их значение. Пути использования активной уксусной кислоты.

Биосинтез жирных кислот. Особенности строения синтетазы жирных кислот. Роль путей обмена глюкозы в синтезе жирных кислот. Высоконепредельные жирные кислоты.

5.3. Обмен холестерола. Метаболизм кетоновых тел

Синтез гидроксиметилглутарил-КоА. Роль этого соединения. Механизмы синтеза кетоновых тел и их биологическая роль.

Восстановление гидроксиметилглутарил-КоА в мевалоновую кислоту. Синтез холестерола. Регуляция синтеза холестерола. Транспорт холестерола в крови, роль ЛПОНП, липопротеинов низкой плотности и липопротеинов высокой плотности в механизмах транспорта холестерола в организме человека. Превращение холестерола в желчные кислоты. Выведение холестерола из организма человека. Количественное определение содержания холестерола и основных фракций липопротеинов в крови.

5.4. Регуляция обмена липидов. Нарушения липидного обмена. Здоровый образ жизни как фактор профилактики атеросклероза

Резервирование и мобилизация жиров в жировой ткани; гормональная регуляция этих процессов. Транспорт жирных кислот по крови. Роль резервирования и мобилизации жиров, нарушение этих процессов при ожирении.

Гиперхолестеролемия и ее причины. Желчекаменная болезнь. Биохимия атеросклероза, факторы риска. Биохимические основы лечения и профилактики гиперхолестеролемии и атеросклероза, роль здорового образа жизни в профилактике атеросклероза (питание, отказ от курения, физическая активность).

Фосфолипиды и гликолипиды, механизмы их синтеза и распада. Фосфолипазы. Функции фосфолипидов и гликолипидов, врожденные нарушения обмена этих соединений.

6. Обмен простых белков и аминокислот

6.1. Переваривание белков. Пути использования аминокислот в клетке

Пищевые белки как источник аминокислот. Требования к белковому питанию. Переваривание белков. Эндо- и экзопептидазы желудочно-кишечного тракта. Всасывание аминокислот. Гниение белков в кишечнике. Азотистый баланс организма человека: положительный, отрицательный азотистый баланс, азотистое равновесие.

Аминокислотный фонд клетки: источники и пути использования аминокислотного фонда. Механизмы катаболизма аминокислот. аминотрансферазы. Трансаминирование, Тканевая внутриклеточная специфичность И трансаминаз ee значение. Прямое непрямое дезаминирование аминокислот. Биологическая роль дезаминирования. Центральная обмене роль глутаминовой кислоты В аминокислот. Декарбоксилирование аминокислот. происхождение, Биогенные амины, функции. Окисление биогенных аминов. Аминоксидазы.

Роль отдельных аминокислот. Метионин и S-аденозилметионин, синтез креатина, адреналина, фосфатидов, метилирование дезоксирибонуклеиновой кислоты (ДНК), источник одноуглеродных групп. Липотропные факторы. Обмен тирозина и фенилаланина, нарушения обмена этих аминокислот: фенилкетонурия, алкаптонурия, альбинизм. Синтез гормонов, производных тирозина.

6.2. Обезвреживание аммиака. Пути превращения безазотистого остатка аминокислот. Показатели азотистого обмена

Основные источники аммиака в организме человека. Пути использования и обезвреживания аммиака: восстановительное аминирование, синтез амидов дикарбоновых кислот, образование карбамоилфосфата. Глутаминаза почек и печени. Образование и выведение солей аммония. Активация глутаминазы почек при ацидозе. Биосинтез мочевины, происхождение атомов азота мочевины. Нарушения синтеза и выведения мочевины. Другие азотсодержащие небелковые молекулы плазмы крови, значение определения их содержания.

Пути использования безазотистого остатка аминокислот: синтез новых аминокислот, образование глюкозы (гликогенные аминокислоты), образование кетоновых тел (кетогенные аминокислоты), прямое окисление, превращение в липиды при нарушениях белкового питания.

7. Обмен нуклеопротеинов. Строение и синтез нуклеиновых кислот. Биосинтез белка. Методы молекулярной биологии

7.1. Строение и обмен нуклеопротеинов

История открытия нуклеопротеинов. Нуклеиновые кислоты.

Особенности первичной структуры нуклеиновых кислот. Связь между нуклеотидами. Вторичная структура нуклеиновых кислот: особенности вторичной структуры ДНК и рибонуклеиновой кислоты (РНК), типы связей, стабилизирующих вторичную структуру. Третичная структура, роль белков в организации пространственной структуры нуклеиновых кислот. Строение рибосом. Полирибосомы. Информосома и матричная РНК, транспортная РНК, строение и функции. Строение хромосом.

Денатурация нуклеиновых кислот. Гибридизация ДНК-ДНК, ДНК-РНК. Методы исследования структуры нуклеиновых кислот.

Распад нуклеиновых кислот. Нуклеазы желудочно-кишечного тракта. Распад клеточных белков и нуклеиновых кислот. Время биологического полураспада белков и нуклеиновых кислот. Ферменты, катализирующие процессы распада белков и нуклеиновых кислот в клетках. Повторное использование нуклеозидов и азотистых оснований для синтеза нуклеотидов.

Синтез пуриновых нуклеотидов. Субстраты синтеза, ключевые ферменты и регуляция синтеза пуриновых нуклеотидов. Распад пуриновых нуклеотидов, образование мочевой кислоты.

Представления о синтезе пиримидиновых нуклеотидов: субстраты, ферменты синтеза, регуляция. Конечные продукты распада пиримидиновых нуклеотидов.

Нарушения обмена нуклеотидов.

7.2. Биосинтез нуклеиновых кислот и белков

Синтез ДНК, субстраты, ферменты, условия синтеза. Репликация как способ передачи информации от матрицы к продукту реакции. Обратная транскрипция, биологическая роль обратной транскрипции.

Биосинтез РНК (транскрипция): субстраты, ферменты, условия транскрипции. Транскрипция как способ передачи информации от ДНК на РНК. Биосинтез рибосомных, транспортных и матричных РНК. Механизмы регуляции транскрипции.

Биосинтез белков. Биологический (аминокислотный, нуклеотидный) код и его свойства. Адапторная роль транспортной РНК. Рекогниция. Биосинтез аминоацил-тРНК: субстратная специфичность аминоацил-тРНК-синтетаз. Механизмы и этапы трансляции. Регуляция трансляции. Универсальность биологического кода и механизма синтеза белков. Антибиотики и токсины – ингибиторы синтеза нуклеиновых кислот и белков.

Процессинг нуклеиновых кислот и белков. Характер изменений строения нуклеиновых кислот и белков после их первичного синтеза.

7.3. Современные методы молекулярной биологии и их прикладное значение для медицины

Полимеразная цепная реакция: этапы и применение. Блот-анализ ДНК и РНК. Геномная дактилоскопия.

Определение последовательности нуклеотидов ДНК методом Сэнджера. Клонирование, генная инженерия.

8. Регуляция обмена веществ. Биохимия гормонов

8.1. Основные механизмы регуляции метаболизма. Механизм действия гормонов

Гормональная регуляция как средство межклеточной и межорганной координации обмена веществ. Регуляция обменных процессов путем изменения активности ферментов (активирование и ингибирование), изменения количества ферментов в клетке (индукция и репрессия синтеза, изменение скорости разрушения ферментов), изменения проницаемости клеточных мембран.

Классификация гормонов по химической структуре, месту образования, механизму действия. Клетки-мишени и клеточные рецепторы гормонов.

Особенности действия гормонов, связывающихся с мембранными рецепторами. Посредники в действии гормона на клетку: циклические пуриновые нуклеотиды, ионы кальция, продукты гидролиза фосфатидилинозитолов. Протеинкиназы, роль протеинкиназ в механизмах изменения активности ферментов.

Механизм действия гормонов, связывающихся с внутриклеточными рецепторами, влияние на синтез белков.

8.2. Влияние важнейших гормонов на метаболизм

Строение, механизм действия и влияние на обмен веществ гормонов гипоталамуса, гипофиза, тиреоидных гормонов, гормонов поджелудочной железы, половых желез и надпочечников. Методика проведения и диагностическое значение теста на толерантность к глюкозе. Гормональная регуляция обмена кальция и фосфора.

Нарушения функции эндокринных желез: гипер- и гипопродукция гормонов, общие принципы лечения.

Эйкозаноиды (простагландины, тромбоксаны, лейкотриены) и их роль в регуляции метаболизма и физиологических функций.

9. Биохимия органов и тканей

9.1. Биохимия крови. Свертывание крови

Форменные элементы крови. Особенности химического состава, строения и метаболизма эритроцитов. Разновидности и производные гемоглобина. Транспорт кислорода и двуокиси углерода крови. Особенности насыщения гемоглобина кислородом и угарным газом. Гемоглобинопатии. Гипоксии. Лейкоциты, особенности строения, химического состава. Роль лейкоцитов.

Плазма крови и сыворотка. Белки плазмы крови. Классификация по функциям белков крови: транспортные белки, белки системы комплемента, кининовой системы, свертывания, фибринолиза, иммуноглобулины, белки-

ингибиторы протеолиза. Белки плазмы - источник аминокислот при голодании. Методы фракционирования белков плазмы крови.

Значение биохимического анализа крови в характеристике состояния здоровья человека. Методы исследования кислотно-основного состояния.

Свертывание крови. Сосудисто-тромбоцитарный и коагуляционный гемостаз. Роль тромбоцитов в процессах гемостаза. Внутренняя и внешняя системы коагуляционного гемостаза. Фазы. Каскадный механизм активирования ферментов, участвующих в свертывании крови. Роль витамина К в свертывании крови. Противосвертывающие системы (антикоагуляционная, фибринолитическая). Гемофилии и тромбозы.

9.2. Биохимия печени

Роль печени в обмене углеводов, липидов, аминокислот. Синтез белков плазмы в печени.

Реакции обезвреживания веществ в печени. Роль микросомного окисления в процессах обезвреживания. Активная глюкуроновая и серная кислоты в реакциях обезвреживания. Реакции обезвреживания продуктов гниения, поступающих из кишечника.

Роль печени в пигментном обмене. Реакции синтеза гема, субстраты, ферменты. Реакции распада гема, прямой и непрямой билирубин. Нарушения обмена билирубина. Желтухи: гемолитическая, обтурационная, паренхиматозная. Желтуха новорожденных. Желчные пигменты крови, кишечника, мочи.

Биохимические механизмы развития печеночно-клеточной недостаточности и печеночной комы. Биохимические методы диагностики нарушений функции печени.

9.3. Биохимия почек и мочи

Основные показатели анализа мочи в норме: объем, плотность, цвет, прозрачность, рН, неорганические и органические составные части мочи (мочевина, мочевая кислота, креатинин, аминокислоты, безазотистые органические компоненты мочи, гормоны и их метаболиты).

Диагностическое значение определения патологических составных частей мочи: протеинурия, глюкозурия, гематурия, кетонурия, желчные пигменты, ферменты, определяемые в моче с диагностической целью.

Особенности метаболизма в почечной ткани. Роль почек в поддержании кислотно-основного состояния. Образование биологически активных веществ в почках.

10. Биохимия питания

10.1. Незаменимые факторы питания. Витамины. Причины и биохимические характеристики синдрома недостаточного питания

Витамины: история открытия и изучения. Классификация витаминов. Причины недостаточности витаминов: экзогенные и эндогенные гипо- и авитаминозы. Гипервитаминозы и их причины.

Водорастворимые витамины (B_1 , B_2 , PP, B_6 , B_9 , B_{12} , биотин, пантотеновая кислота, аскорбиновая кислота, рутин). Химическое строение, активные формы,

роль водорастворимых витаминов в обмене веществ, механизмы всасывания и выделения из организма человека.

Жирорастворимые витамины. Особенности строения и механизма действия витаминов A, E, K, D, влияние на метаболизм и развитие организма человека. Антиоксидантная роль жирорастворимых витаминов, применение в качестве лекарственных средств.

Суточная потребность в витаминах. Содержание витаминов в пищевых источниках. Микрофлора кишечника – важный источник витаминов у человека. Антивитамины. Методы оценки насыщенности организма человека витаминами.

Другие незаменимые факторы питания и их роль (полиненасыщенные жирные кислоты, аминокислоты). Витаминоподобные вещества.

Нарушения питания. Клинические формы синдрома недостаточного питания (квашиоркор и маразм), причины развития, основные биохимические нарушения.

10.2. Вода и минеральные соли

Минеральные вещества как незаменимые факторы питания. Классификация. Пути поступления минеральных веществ в организм человека, механизмы всасывания. Функции минеральных веществ.

Электролитный состав биологических жидкостей. Механизмы регуляции объема, электролитного состава и рН жидкостей организма человека. Роль почек, желудочно-кишечного тракта, кожи, легких в регуляции водно-солевого обмена. Условия и механизмы возникновения ацидоза, алкалоза, обезвоживания и отеков.

Обмен натрия и калия, особенности распределения в организме человека, регуляция обмена.

10.3. Обмен кальция и фосфора. Микроэлементы. Роль окружающей среды в развитии макро- и микроэлементозов

Потребность в кальции и фосфоре, механизмы всасывания, распределение в организме человека, регуляция обмена.

Микроэлементы. Биологическая роль железа, меди, кобальта, йода, магния, цинка, марганца, фтора, селена. Обмен микроэлементов в организме человека. Обмен железа. Трансферрин и ферритин. Железодефицитные анемии, их диагностика.

Макро- и микроэлементозы, роль факторов окружающей среды в их развитии.

11. Основы биохимического мониторинга в разработке критериев обеспечения здоровья населения

Основные биохимические показатели, характеризующие состояние организма человека и его систем. Биохимические основы развития заболеваний. Принципы лабораторной диагностики и лечения патологии метаболизма.

Информационно-методическая часть

Литература

Основная:

1. Биологическая химия : учебник / Таганович, Анатолий Дмитриевич [и другие]; под редакцией А.Д.Тагановича. – Минск : Вышэйшая школа, 2016. – 671 с.

Дополнительная:

- 2. Биохимия : учебник / Л.В.Авдеева [и другие]; под редакцией Е.С.Северина. – Москва : Геотар-Медиа, 2015. – 759 с.
- 3. Основы биохимии Ленинджера : в 3 томах / Д.Нельсон, М.Кокс; перевод с английского Москва : Лаборатория знаний, 2017.
- 4. Маршалл, Дж. Клиническая биохимия. / Дж.Маршалл. Москва : БИНОМ, 2014. 408 с.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Время, отведенное на самостоятельную работу, может использоваться обучающимися на:

подготовку к лекциям и практическим занятиям;

подготовку к коллоквиумам, зачету и экзамену по учебной дисциплине; выполнение исследовательских и творческих заданий;

подготовку тематических докладов, рефератов, презентаций; конспектирование учебной литературы.

Основные методы организации самостоятельной работы:

написание и презентация реферата;

выступление с докладом;

компьютеризированное тестирование.

Контроль самостоятельной работы может осуществляться в виде: контрольной работы;

итогового занятия, коллоквиума в форме устного собеседования, письменной работы, тестирования;

обсуждения рефератов;

защиты протокола лабораторного занятия;

оценки устного ответа на вопрос, сообщения, доклада или решения задачи на лабораторных занятиях;

проверки рефератов, письменных докладов; индивидуальной беседы.

Перечень рекомендуемых средств диагностики

Для диагностики компетенций используются следующие формы:

Устная форма:

коллоквиумы;

доклады на конференциях;

устный экзамен.

Письменная форма:

тесты;

контрольные опросы;

контрольные работы;

письменные отчеты по аудиторным (домашним) практическим упражнениям;

письменные отчеты по лабораторным работам;

рефераты;

оценивание на основе модульно-рейтинговой системы.

Устно-письменная форма:

отчеты по аудиторным практическим упражнениям с их устной защитой; отчеты по домашним практическим упражнениям с их устной защитой; отчеты по лабораторным работам с их устной защитой; зачет;

оценивание на основе модульно-рейтинговой системы.

Техническая форма:

электронные тесты.

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ НАВЫКОВ

- 1. Количественное определение белка в сыворотке крови.
- 2. Определение кислотности желудочного сока.
- 3. Качественное определение патологических компонентов в моче: кетоновые тела, глюкоза, белок, кровяные пигменты.
- 4. Количественное определение патологических компонентов в моче: глюкоза, белок.
- 5. Количественное определение биологических веществ в крови и моче: глюкоза, холестерол, липопротеины, мочевина, билирубин, натрий, калий, кальций, витамин С.

составители:

Заведующий кафедрой биологической химии Учреждения образования «Белорусский государственный медицинский университет», доктор медицинских наук, профессор	А.Д.Таганович
Доцент кафедры биологической химии	
Учреждения образования «Белорусский государственный медицинский	
университет», кандидат медицинских	
наук, доцент	Ж.А.Рутковская
Оформление типовой учебной програм соответствует установленным требовани. Начальник учебно-методического отдела учреждения образования «Белорусский государственный медицинский университет»	-
Начальник Республиканского центра научно-методического обеспечения медицинского и фармацевтического образования государственного учреждения образования «Белорусская медицинская академия	
последипломного образования»	Л.М.Калацей

Сведения об авторах (составителях) типовой учебной программы

Фамилия, имя, отчество	Таганович Анатолий Дмитриевич
Должность, ученая	Заведующий кафедрой биологической химии
степень, ученое звание	учреждения образования «Белорусский
	государственный медицинский университет»,
	доктор медицинских наук, профессор
🕿 служебный	277 17 64
E-mail:	Taganovich@bsmu.by
Фамилия, имя, отчество	Рутковская Жанна Александровна
Должность, ученая	Доцент кафедры биологической химии
степень, ученое звание	учреждения образования «Белорусский
	государственный медицинский университет»,
	кандидат медицинских наук, доцент
🕿 служебный	277 12 79
E-mail:	biochem@bsmu.by