МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учебно-методическое объединение по образованию в области информатики и радиоэлектроники

Пе Ре —	ГВЕРЖДАЮ ервый заместитель Министра образования спублики Беларусь И.А. Старовойтова гистрационный № ТД/тип.	
ЧИСЛЕН	ные методы	
для спе 1-36 04 01 Программно-управля 1-39 02 02 Проектирование и пр электро 1-39 02 03 Меди 1-40 01 01 Программное обеспе 1-40 03 01 Искус 1-58 01 01 Инженерно-психологиче	рамма по учебной дисциплине ециальностей: емые электронно-оптические системы; оизводство программно-управляемых онных средств; цинская электроника; ечение информационных технологий; сственный интеллект; еское обеспечение информационных технологий	
	СОГЛАСОВАНО	
	Начальник Главного управления профессионального образования Министерства образования Республики Беларусь	
СОГЛАСОВАНО Председатель Учебно-методического объединения по образованию в области информатики и оадиоэлектроники В.А. Богуш	СОГЛАСОВАНО Проректор по научно-методической работе Государственного учреждения образования «Республиканский институт высшей школы» И.В. Титович	
	Эксперт-нормоконтролер	
Mı	инск 2021	

СОСТАВИТЕЛЬ:

Л.П. Князева, доцент кафедры высшей математики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат физико-математических наук, доцент.

РЕЦЕНЗЕНТЫ:

Кафедра общей математики и информатики Белорусского государственного университета (протокол № 11 от 12.05.2021 г.);

Г.И. Лебедева, доцент кафедры высшей математики Белорусского национального технического университета, кандидат технических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой высшей математики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 10 от 22.03.2021 г.);

Научно-методическим советом учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 11 от 18.06.2021 г.);

Научно-методическим советом по прикладным информационным системам и технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 5 от 05.5.2021 г.);

Научно-методическим советом по разработке программного обеспечения и информационно-коммуникационным технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 7 от $01.06.2021 \, \Gamma$.);

Научно-методическим советом по электронным системам и технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 9 от $17.05.2021 \, \Gamma$.).

Ответственный за редакцию: С.С. Шишпаронок

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Типовая учебная программа по учебной дисциплине «Численные методы» разработана для студентов учреждений высшего образования, обучающихся по специальностям 1-36 04 01 «Программно-управляемые электронно-оптические системы», 1-39 02 02 «Проектирование и производство программно-управляемых электронных средств», 1-39 02 03 «Медицинская электроника», 1-40 01 01 «Программное обеспечение информационных технологий», 1-40 03 01 «Искусственный интеллект», 1-58 01 01 «Инженерно-психологическое обеспечение информационных технологий» в соответствии с требованиями образовательных стандартов высшего образования первой ступени и типовых учебных планов вышеуказанных специальностей.

Учебная дисциплина «Численные методы» дает представление о роли и месте вычислительной математики при постановке, выборе эффективных алгоритмов и интерпретации результатов решения задач, а также знания и умения, необходимые при изучении специальных дисциплин, связанных с будущей профессиональной деятельностью инженеров-системотехников, инженеровпрограммистов, инженеров-электроников-программистов.

ЦЕЛЬ, ЗАДАЧИ, РОЛЬ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель учебной дисциплины: освоение студентами различных методов численного решения классических модельных задач прикладной математики и математической физики, а также методов оценок погрешностей результатов вычисления.

Задачи учебной дисциплины:

изучение основных численных методов решения скалярных уравнений и систем линейных уравнений, численных методов аппроксимации, методов численного дифференцирования и интегрирования, численных методов решения обыкновенных дифференциальных уравнений и уравнений в частных производных;

изучение теоретического обоснования вышеперечисленных методов, приобретение навыков анализа их точности, условий применимости и других свойств;

приобретение навыков составления алгоритмов/программ для решения различных задач конкретным численным методом.

Базовыми учебными дисциплинами по курсу «Численные методы» являются следующие учебные дисциплины: «Линейная алгебра и аналитическая геометрия», «Математический анализ» и «Основы алгоритмизации и программирования». В свою очередь учебная дисциплина «Численные методы» является базой для таких учебных дисциплин, как «Алгоритмы компьютерной графики» (компонент учреждения высшего образования), «Цифровая обработка биомедицинских сигналов и изображений», «Математические методы в проектировании и производстве изделий электроники».

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В результате изучения учебной дисциплины «Численные методы» формируются следующие компетенции:

универсальные:

обладать навыками творческого аналитического мышления;

базовые профессиональные:

выбирать эффективные алгоритмы вычислительной математики для решения поставленной профессиональной задачи, интерпретировать и анализировать результаты ее решения;

для специальности 1-39 02 03 «Медицинская электроника»: применять методы вычислительной математики при постановке, выборе эффективных алгоритмов и интерпретации результатов решения задач в области проектирования и эксплуатации средств электроники.

В результате изучения учебной дисциплины обучающийся должен: знать:

основные идеи, лежащие в основе численных методов;

источники и виды погрешностей решения конечномерных задач;

основные численные методы алгебры;

методы построения интерполяционных многочленов;

методы численного дифференцирования и интегрирования;

методы решения обыкновенных дифференциальных уравнений;

принципы работы и особенности существующих пакетов прикладных программ;

уметь:

численно решать алгебраические и трансцендентные уравнения;

численно решать системы линейных уравнений методом простой итерации, методом Зейделя;

численно решать системы нелинейных уравнений методом Ньютона; применять методы интерполирования функций;

производить численное дифференцирование и интегрирование функций, заданных аналитически;

численно решать обыкновенные дифференциальные уравнения; владеть:

инструментарием для решения математических задач в своей предметной области;

навыками применения численных методов с целью доведения решения различных классов задач до численного результата и умением оценивать погрешности применяемых методов.

Программа рассчитана на 108 учебных часов, из них – 50 аудиторных.

Примерное распределение аудиторных часов по видам занятий: лекций – 26 часов, практических занятий – 24 часа.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

	Всего	Лекции,	Практи-
***	аудитор-	часы	ческие
Наименование раздела, темы	ных,		занятия,
	часы		часы
Раздел 1. Теоретические основы численных	8	4	4
методов. Основы теории погрешностей			
Тема 1. Основы теории погрешностей	4	2	2
Тема 2. Обзор инструментальных программ-	4	2	2
ных средств			
Раздел 2. Численные методы линейной ал-	10	4	6
гебры			
Тема 3. Прямые методы решения систем ли-	4	2	2
нейных алгебраических уравнений			
Тема 4. Обусловленность задачи решения си-	2	-	2
стем линейных алгебраических уравнений			
Тема 5. Итерационные методы решения систем	4	2	2
линейных алгебраических уравнений			
Раздел 3. Методы интерполирования и при-	10	6	4
ближения функций			
Тема 6. Интерполирование функций	4	2	2
Тема 7. Равномерное приближение функций	2	2	-
Тема 8. Среднеквадратическое приближение	4	2	2
функций			
Раздел 4. Решение нелинейных уравнений	6	4	2
Тема 9. Итерационные методы решения нели-	6	4	2
нейных уравнений			
Раздел 5. Численное интегрирование и диф-	8	4	4
ференцирование			
Тема 10. Квадратурные формулы численного	4	2	2
интегрирования			
Тема 11. Численное дифференцирование	4	2	2
Раздел 6. Численные методы решения диф-	8	4	4
ференциальных уравнений и систем			
Тема 12. Решение задачи Коши для уравнения	4	2	2
первого порядка			
Тема 13. Решение задачи Коши для систем	4	2	2
уравнений первого порядка			
Итого:	50	26	24

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЧИСЛЕННЫХ МЕТОДОВ. ОСНОВЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

Тема 1. ОСНОВЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

Источники и классификация погрешностей. Абсолютная и относительная погрешности. Значащие и верные цифры.

Погрешности (относительные) арифметических операций. Погрешность функции одной и многих переменных. Обусловленность вычислительной задачи.

Представление чисел в ЭВМ. Понятия машинного эпсилон, машинной бесконечности, машинного нуля.

Вычислительные задачи. Корректность и обусловленность вычислительных задач. Вычислительные алгоритмы. Катастрофическая потеря точности.

Тема 2.ОБЗОР ИНСТРУМЕНТАЛЬНЫХ ПРОГРАММНЫХ СРЕДСТВ

Обзор инструментальных программных средств пакетов прикладных программ Excel, Mathcad, Maple, Mathematica.

Раздел 2. ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Тема 3. ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Классификация уравнений и систем уравнений. Система линейных алгебраических уравнений (СЛАУ) и задачи, возникающие при решении СЛАУ. Прямые методы решения СЛАУ. Метод Гаусса: основная идея и схемы реализации (схема единственного деления и с выбором главных элементов). Алгоритмизация метода Гаусса.

LU-разложение матрицы и его использование для решения СЛАУ, вычисление определителя и нахождения обратной матрицы. Метод прогонки. Алгоритм и трудоемкость метода.

Тема 4. ОБУСЛОВЛЕННОСТЬ ЗАДАЧИ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Нормы векторов и матриц. Обусловленность задачи решения СЛАУ. Число обусловленности.

Тема 5. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Метод простой итерации, метод Зейделя: алгоритмы и теоремы сходимости. Метод релаксации.

Раздел 3. МЕТОДЫ ИНТЕРПОЛИРОВАНИЯ И ПРИБЛИЖЕНИЯ ФУНКЦИЙ

Тема 6. ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ

Постановка задачи глобальной полиномиальной интерполяции. Узлы интерполяции. Существование и единственность интерполяционного многочлена. Многочлен Лагранжа. Погрешность интерполяции.

Интерполяционный многочлен Ньютона с конечными и с разделенными разностями. Интерполяция сплайнами.

Тема 7. РАВНОМЕРНОЕ ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Постановка задачи приближения функций. Различные способы задания нормы в нормированном пространстве.

Многочлен наилучшего равномерного приближения. Многочлены Чебышева.

Тема 8. СРЕДНЕКВАДРАТИЧЕСКОЕ ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Метод наименьших квадратов: общая характеристика метода. Построение эмпирических формул методом наименьших квадратов: линейная зависимость, квадратичная зависимость.

Раздел 4. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 9. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Постановка задачи поиска корня нелинейного уравнения. Локализация корней, методы уточнения корня - метод бисекции, метод простой итерации. Достаточное условие сходимости метода простой итерации. Приведение к виду, удобному для применения метода. Априорные и апостериорные оценки погрешности методов.

Метод Ньютона. Достоинства и недостатки метода Ньютона. Другие итерационные методы (метод секущих, упрощенный метод Ньютона и др.). Скорость сходимости итерационных методов решения нелинейных уравнений.

Раздел 5. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ И ДИФФЕРЕНЦИРОВАНИЕ

Тема 10. КВАДРАТУРНЫЕ ФОРМУЛЫ ЧИСЛЕННОГО ИНТЕГРИРОВАНИЯ

Постановка задачи численного интегрирования. Квадратурные формулы Ньютона-Котеса. Формулы прямоугольников, трапеций, Симпсона и их оценки погрешности. Правило Рунге оценки погрешностей численного интегрирования. Квадратурные формулы наивысшей алгебраической степени точности.

Тема 11. ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ

Постановка задачи численного дифференцирования. Левая, правая и центральная разностные производные (первого порядка). Вторая разностная производная. Их оценки погрешности. Формулы интерполяционного типа. Обусловленность задачи численного дифференцирования.

Раздел 6. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И СИСТЕМ

Тема 12. РЕШЕНИЕ ЗАДАЧИ КОШИ ДЛЯ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Постановка задачи Коши и ее геометрический смысл. Дискретизация задачи. Основные характеристики численных методов решения задачи Коши: явность/неявность, многошаговость. Аппроксимация, устойчивость и сходимость численных методов. Понятие о локальной и глобальной погрешностях.

Явный и неявный методы Эйлера. Модификации метода Эйлера 2-го порядка точности. Идея построения методов Рунге-Кутты. Порядок точности методов. Метод Рунге-Кутты 4-го порядка точности. Правило Рунге оценки погрешностей решения задачи Коши. Организация вычислений с автоматическим выбором шага.

Тема 13. РЕШЕНИЕ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

Решение задачи Коши для систем дифференциальных уравнений первого порядка и уравнений m-го порядка.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

ОСНОВНАЯ

- 1. Бахвалов, Н.С. Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 6-е изд. Москва : БИНОМ. Лаборатория знаний, 2008. 636 с.
- 2. Бахвалов, Н. С. Численные методы. Решения задач и упражнения : учебное пособие для вузов / Н. С. Бахвалов, А. А. Корнев, Е. В. Чижонков. 2-е изд., испр. и доп. Москва : Лаборатория знаний, 2016. 352 с.
- 3. Вержбицкий, В. М. Численные методы: линейная алгебра и нелинейные уравнения: учебное пособие / В. М. Вержбицкий. 2-е изд., испр. Москва: Оникс 21 век, 2005. 432 с.
- 4. Вержбицкий, В. М. Численные методы. Математический анализ и ОДУ / В. М. Вержбицкий. Москва : Высшая школа, 2001. 382 с.
- 5. Копчёнова, Н. В. Вычислительная математика в примерах и задачах : учебное пособие для втузов / Н. В. Копчёнова, И. А. Марон. Москва : Наука, 1972.-367 с.

ДОПОЛНИТЕЛЬНАЯ

- 1. Крылов, В. И. Вычислительные методы : учебное пособие для вузов. Т. 1 / В. И. Крылов, В. В. Бобков, П. И. Монастырный. Москва : Наука, 1976. 584 с.
- 2. Крылов, В. И. Вычислительные методы : учебное пособие для вузов. Т. 2 / В. И. Крылов, В. В. Бобков, П. И. Монастырный. Москва : Наука, 1977. 498 с.
- 3. Бахвалов, Н. С. Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 9-е изд., электрон. Москва : Лаборатория знаний, 2020.-636 с.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

проработка лекционного материала; выполнение расчетных работ.

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ КОМПЕТЕНЦИЙ СТУДЕНТА

Типовыми учебными планами по специальностям 1-36 04 01 «Программно-управляемые электронно-оптические системы», 1-39 02 02 «Проектирование и производство программно-управляемых электронных средств», 1-39 02 03 «Медицинская электроника», 1-40 01 01 «Программное обеспечение информационных технологий», 1-40 03 01 «Искусственный интеллект», 1-58 01 01 «Инженерно-психологическое обеспечение информационных технологий» в качестве формы текущей аттестации по учебной дисциплине «Численные методы» рекомендуется экзамен.

Оценка учебных достижений студента производится по десятибалльной системе.

Для промежуточного контроля по учебной дисциплине и диагностики компетенций студентов могут использоваться следующие формы:

текущий опрос;

отчеты по аудиторным практическим упражнениям с их устной защитой; выполнение тестовых заданий;

контрольная работа.

РЕКОМЕНДУЕМЫЕ МЕТОДЫ (ТЕХНОЛОГИИ) ОБУЧЕНИЯ

Основные рекомендуемые методы (технологии) обучения, отвечающие целям и задачам учебной дисциплины:

проведение лекций с использованием презентаций на основе мультимедийных технологий;

выполнение студентами индивидуальных заданий под управлением преподавателя на практических занятиях.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

- 1. Теоретические основы численных методов. Основы теории погрешностей.
 - 2. Численные методы линейной алгебры.
 - 3. Методы интерполирования и приближения функций.
 - 4. Решение нелинейных уравнений.
 - 5. Численное интегрирование и дифференцирование.
 - 6. Численные методы решения дифференциальных уравнений и систем.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ КОМПЬЮТЕРНЫХ ПРОГРАММ

(необходимого оборудования, наглядных пособий и т. п.)

- 1. Microsoft Windows;
- 2. Mathcad:
- 3. Maple;
- 4. Mathematica.